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Classical case

E : bounded open set in Rd .

u : bounded strictly positive potential, that is a positive
superharmonic function for which every harmonic minorant is
negative

Property : for every increasing sequence (Dn)n of relatively
compact open subsets of E with

⋃
n Dn = E , the sequence

(HDn
u )n decreases to zero, or equivalently

inf
n

HDn
u = 0 λ-a.e.,

where HDn
u is the Perron-Wiener-Brelot solution of the Dirichlet

problem on Dn with boundary data u.

A harmonic space possessing such a potential is called
P-harmonic.

[C.Constantinescu, A. Cornea, Springer 72]



General frame

E : a Lusin topological space with Borel σ-algebra B

L : the generator of a right Markov process
X = (Ω,F ,Ft ,Xt , θt ,Px ) with state space E :

– (Ω,F) is a measurable space, Px is a probability measure on
(Ω,F) for every x ∈ E

– (Ft )t≥0: filtration on Ω

– The mapping [0,∞)× Ω 3 t 7−→ Xt (ω) ∈ E is
B([0,∞))×F-measurable

– Xt is Ft/B–measurable for all t



– There exists a semigroup of kernels (Pt )t≥0 on (E ,B), called
transition function of X , such that for all t ≥ 0, x ∈ E and
A ∈ B one has

Px (Xt ∈ A) = Pt (x ,A)

[ If f ∈ pB then Ex (f ◦ Xt ) = Pt f (x) ]

– For each ω ∈ Ω the mapping

[0,∞) 3 t 7−→ Xt (ω) ∈ E

is right continuous



Path regularity: quasi-left continuity, standardness

Let λ be a finite measure on E . The right process X is called
λ-standard if:

– X has càdlàg trajectories Pλ-a.e., i.e., it possesses

left limits in E Pλ-a.e. on [0, ζ); ζ is the life time of X

– X is quasi-left continuous up to ζ Pλ-a.e., i.e., for every
increasing

sequence (Tn)n of stopping times with Tn ↗ T we have

XTn −→ XT Pλ-a.e. on [T < ζ]

The right process X is called standard if it is λ-standard for
every measure λ.



The resolvent of the process X

U = (Uq)q>0,

Uqf (x) := Ex
∫ ∞

0
e−qt f ◦ Xtdt =

∫ ∞
0

e−qtPt f (x)dt ,

x ∈ E ,q > 0, f ∈ pB

L is the infinitesimal generator of (Uq)q>0 ,
[
Uq = (q − L)−1]



L-superharmonic function

The following properties are equivalent for a function
v : E −→ R+:

(i) v is (L − q)-superharmonic

(ii) There exists a sequence (fn)n of positive, bounded,
Borel measurable functions on E such that Uqfn ↗ v

(iii) αUq+αv ≤ v for all α > 0 and αUq+αv ↗ v

S(L − q) : the set of all (L − q)-superharmonic functions



Reduced function

If M ∈ B, q > 0, and u ∈ S(L − q) then the reduced function
of u on M (with respect to L− q) is the function RM

d u defined by

RM
q u := inf

{
v ∈ S(L − q) : v ≥ u on M

}
.

• The reduced function RM
q u is universally B-measurable.

• The functional M 7−→ cλ(M), M ⊂ E , defined by

cλ(M) := inf{
∫

E
RG

q 1dλ : G open , M ⊂ G}

is a Choquet capacity on E .

• RM
q f (x) = Ex (f (XDM )) [Hunt’s Theorem]



Tightness of capacity – càdlàg property of the paths

An increasing sequence (Fn)n ⊂ B is called λ-nest provided
that

inf
n

RE\Fn
q 1 = 0 λ− a.e.

• If X has càdlàg trajectories Pλ-a.e. then the capacity cλ
is tight, i.e., there exists a λ-nest of compact sets.

[T. Lyons & M. Röckner, Bull. London. Math. Soc. 1992]

[L.B. & N. Boboc, Bull. London. Math. Soc. 2005]



• The following assertions are equivalent for a finite measure
λ on E .

(i) The capacity cλ is tight.

(ii) For every increasing sequence (Dn)n of open sets with⋃
n Dn = E we have

inf
n

RE\Dn
q 1 = 0 λ− a.e.

• Assume that the space E is endowed with a Ray topology
(a topology generated by a cone of bounded L-superharmonic
functions).

If the capacity cλ is tight, then the process X has càdlàg
trajectories Pλ-a.e. Moreover X is λ-standard (i.e., it is quasi
left continuous).



Compact Lyapunov function

A (L − q)-superharmonic function v is called compact
Lyapunov function provided that it is finite λ-a.e. and the set
[v ≤ α] is relatively compact for all α > 0.

• The following assertions are equivalent.

(a) The capacity cλ is tight, i.e., there exists a λ-nest of
compact sets.

(b) There exists a compact Lyapunov function.



Existence of a Markov process

Theorem
We endow E with a Lusin topology T (C) generated by a vector
lattice C of bounded, B-measurable, real-valued functions on E
such that 1 ∈ C, there exists a countable subset of C+,
separating the points of E.
Let U = (Uα)α>0 be a Markovian resolvent of kernels on (E ,B)
such that the following conditions (a) and (b) and (c) hold:
(a) Uα(C) ⊂ C for all α > 0;
(b) lim

α→∞
αUαf (x) = f (x) for all f ∈ C and x ∈ E.

(c) There exists a compact Lyapunov function (which is finite
λ-a.e., where λ be a finite measure on E).

Then there exists a standard process with state space E such
that its resolvent equals U λ-quasi everywhere.



Applications

A1. Construction of martingale solutions for stochastic PDE on
Hilbert spaces

[L.B., N. Boboc, & M. Röckner, J. Evol. Eq. 2006]

A2. Explicit construction of compact Lyapunov functions for
Lévy processes on Hilbert spaces

[L.B., A. Cornea, & M. Röckner, RIMS Proceedings 2008]
[L.B., A. Cornea, & M. Röckner (preprint 2010)]

A3. Construction of measure valued branching processes
associated to some nonlinear PDE

[L.B., J. Euro. Math. Soc. (to appear)]

[L.B. & M. Röckner, Complex Analysis and Op. Th. 2011]



A1. Construction of martingale solutions for stochastic
PDE on Hilbert spaces

Consider SPDE on a Hilbert space H (with inner product 〈 , 〉
and norm | · |) of type

(1) dX (t) =
[
AX (t) + F0

(
X (t)

)]
dt +

√
CdW (t) ;

– W (t), t ≥ 0, is a cylindrical Brownian motion on H;

– C is a positive definite self-adjoint linear operator on H;

– A : D(A) ⊂ H → H is the infinitesimal generator of a
C0-semigroup on H.



– Furthermore,

F0(x) := y0 , x ∈ D(F ),

where y0 ∈ F (x) such that |y0| = min
y∈F (x)

|y |, and

F : D(F ) ⊂ H → 2H is an m-dissipative map. This means that
D(F ) is a Borel set in H and 〈u − v , x − y〉 ≤ 0 for all
x , y ∈ D(F ), u ∈ F (x), v ∈ F (y), and

Range(I − F ) :=
⋃

x∈D(F )

(
x − F (x)

)
= H.

– Since for any x ∈ D(F ) the set F (x) is closed, non-empty and
convex, F0 is well-defined.



Remark. Such equations have been studied in [G. Da Prato, M.
Röckner, PTRF 02], the main novelty being that F0 has no
continuity properties.
However, a martingale solution to (1) was only constructed
under the assumption that the inverse C−1 of C exists and is
bounded and that A = A∗ where

(
A∗,D(A∗)

)
denotes the

adjoint of
(
A,D(A)

)
. Hence, in particular, the case, where C is

trace class, was not covered in the final result.



The underlying Kolmogorov operator

A heuristic application of Itô’s formula to a solution of (1)
implies that the Kolmogorov operator on test functions

ϕ ∈ EA(H) := lin. span
{

sin〈h, x〉, cos〈h, x〉
∣∣ h ∈ D(A∗)

}
has the following form:

L0ϕ(x) =
1
2
·Tr
[
CD2ϕ(x)

]
+
〈
x ,A∗Dϕ(x)

〉
+
〈
F0(x),Dϕ(x)

〉
, x ∈ H,

where Dϕ(x), D2ϕ(x) denote the first and second Fréchet
derivatives of ϕ at x ∈ H considered as an element in H and as
an operator on H, respectively.
– By the chain rule we have Dϕ(x) ∈ D(A∗) for all ϕ ∈ EA(H),
x ∈ H.
– L0 is well-defined for all ϕ of the form ϕ(x) =
f
(
〈h1, x〉, . . . , 〈hM , x〉

)
, x ∈ H, with f ∈ C2(RM), M ∈ N,

h1, . . . ,hM ∈ D(A∗).



Assumptions (as in [G. Da Prato, M. Röckner, PTRF 02]):

(H1) (i) A is the infinitesimal generator of a strongly continuous
semigroup etA, t ≥ 0, on H, and there exists a constant ω > 0
such that 〈Ax , x〉 ≤ −ω |x |2 for all x ∈ D(A).

(ii) C is self-adjoint, nonnegative definite and such that
Tr Q <∞, where Qx :=

∫∞
0 etA C etA∗ xdt , x ∈ H.

(H2) There exists a probability measure µ on the Borel
σ-algebra B(H) of H such that

(i)
∫
D(F )

(
|x |2p + |F0(x)|p + |x |2p · |F0(x)|p

)
µ(dx) <∞.

(ii) For all ϕ ∈ EA(H) we have L0ϕ ∈ Lp(H, µ) and
∫
L0ϕdµ = 0

(‘infinitesimal invariance’).
(iii) µ

(
D(F )

)
= 1.



Construction of the semigroup;
cf. [G. Da Prato, M. Röckner, PTRF 02]

For simplicity, we shall treat only the case p = 2.
By assumption (H2) (ii) one can prove that

(
L0, EA(H)

)
is

dissipative on L2(H, µ), hence closable. Let
(
L,D(L)

)
denote

its closure.

Assumptions (H1) and (H2) imply that
(
L,D(L)

)
is

m-dissipative, hence generates a C0-semigroup Pt := etL,
t ≥ 0, on L2(H, µ) which is Markovian, i.e. positivity preserving
and Pt1 = 1 for all t ≥ 0.



The associated resolvent of contractions on L2(E , µ)

Clearly, µ is invariant for (Pt )t≥0, i.e.
∫

Pt fdµ =
∫

fdµ for all
t ≥ 0, f ∈ L2(H, µ). For f ∈ L2(H, µ) and α > 0 we define

Vαf :=

∫ ∞
0

e−αt Pt f dt .

Then (Vα)α>0 is a strongly continuous Markovian contraction
resolvent.



Additional assumption

(H3) (i) There exists an orthonormal basis {ej | j ∈ N} of H so
that

⋃
N∈N EN with EN := lin. span{ej | 1 ≤ j ≤ N} is dense in

D(A∗) with respect to | · |A∗ and such that for the orthogonal
projection PN onto EN in H we have that the function
H 3 x 7→ 〈PNx ,A∗ PNx〉 converges in L1(H, µ) to
H 3 x 7→ 〈x ,A∗x〉 (defined to be +∞ if x ∈ H \ D(A∗)).

(ii) There exist two increasing functions %1, %2 : [1,∞)→ (0,∞)
such that ∣∣F0(x)

∣∣2 ≤ %1
(
|x |
)

+ %2
(
|x |
) ∣∣〈x ,A∗x〉∣∣

for all x ∈ H, and the function on the right hand side is in
L1(H, µ).



Compact Lyapunov function constructed by
approximation

Let u,g : H −→ R+, u,g ∈ Lp(H, µ) such that u has compact
level sets.

Assume that there exist two sequences, (uN)N ∈ D(L) and
(gN)N ∈ Lp(H, µ) ,such that:

• (β − L)uN ≤ gN for all N ∈ N;

• (uN)N converges µ-a.e to u and (gN)N converges in Lp(H, µ)
to g as N →∞.

Then v := Vβg is a compact Lyapunov function
(because uN ≤ VβgN for all N and passing to the limit we get
u ≤ v ).



Application

Take:

u(x) := |x |2 , x ∈ H,

uN := u ◦ PN , N ∈ N;

g(x) := 2 |x |2 +
(
2 + %2(|x |)

) ∣∣〈x ,A∗x〉∣∣+ %1
(
|x |
)
, x ∈ H,

gN := g ◦ PN , N ∈ N;

• Assumptions (H2) and (H3) imply that uN −→ u µ-a.e. and
gN −→ g in L1(H, µ) as N →∞



Theorem
Assume (H1)− (H3), let (Vα)α>0 be as defined above and T
be the weak topology on H. Then there exists a right process
with state space H, associated with (Vα)α>0, which is a
martingale solution of (1).



A2. Explicit construction of compact Lyapunov
functions for Lévy processes on Hilbert spaces

– E : a real separable Banach space with topological dual E ′

– L : the generator of a resolvent (Uα)α>0, e.g. a closed linear
operator (L,D(L)) on Cu(E) (the space of all bounded
uniformly continuous real valued functions on E) topological
space E) such that

(α− L)−1 = Uα, α > 0

– L is initially only known for "nice" functions u : E −→ R; one
can check that the given L is defined on the set P of
polynomials of elements in E ′, i.e., function u : E −→ R of type

u(x) = p(l1(x), l2(x), . . . , lm(x)), x ∈ E

with m ∈ N arbitrary and l1, . . . lm ∈ E ′, p a polynomial in m
variables.



– Assume that L is a diffusion operator, that is it satisfies the
Leibniz rule and that Ll = 0 for all l ∈ E ′. This is e.g. the case
when L is a differential operator only involving second
derivatives. More precisely, for u ∈ P, u = p(l1, l2, . . . , lm),

(1) Lu(x) =
∑∞

i,j=1 E ′〈lj ,A(x)li〉E∂i∂j p(l1, . . . , lm)

where ∂i denotes derivative with respect to the i-th variable and
for x ∈ E , A(x) : E ′ −→ E , linear, bounded and nonnegative,
continuous in x . Note that the sum in (1) is finite.



– Let (Pt )t≥0 be the corresponding semigroup:

Ptu − u =

∫ t

0
PsLu ds, t ≥ 0.

In particular for l ∈ E ′, t ≥ 0,

Pt l2 − l2 =

∫ t

0
Ps(Ll2)ds =

∫ t

0
Ps(2E ′〈l ,A(x)l〉E )ds ≥ 0.

It follows that

Pt l2 ≥ l2, for all t > 0 and l ∈ E ′.



– Conclusion: The function l2 is L-subharmonic.

– Construct a Lyapunov function in terms of l ∈ E ′ and obtain,
in particular, that infinite dimensional Lévy processes are
quasi-left continuous: the function

v = Uq l2

is L-superharmonic and has compact level sets because

qv = qUq l2 ≥ l2.



A3. Nonlinear evolution equation

(∗)


d
dt vt (x) = Lvt (x) + Φ(x , vt (x))

v0 = f ,

where f ∈ pbB.

Aim: To give a probabilistic treatment of the equation (∗).

• L is the infinitesimal generator of a right Markov process
with state space E , called spatial motion.



Branching mechanism

A function Φ : E × [0,∞) −→ R of the form

Φ(x , λ) = −b(x)λ− c(x)λ2 +

∫ ∞
0

(1− e−λs−λs)N(x ,ds)

• c ≥ 0 and b are bounded B-measurable functions

• N : pB((0,∞)) −→ pB(E) is a kernel such that

N(u ∧ u2) ∈ bpB

Examples of branching mechanisms

Φ(λ) = −λα if 1 < α ≤ 2
Φ(λ) = λα if 0 < α < 1
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Construction of the nonlinear semigroup
([Fitzsimmons 88])

The equation

(∗)


d
dt vt (x) = Lvt (x) + Φ(x , vt (x))

v0 = f ,

is formally equivalent with

(∗∗) vt (x) = Pt f (x) +

∫ t

0
Ps(x ,Φ(·, vt−s))ds,

t ≥ 0, x ∈ E



The following assertions hold.

i) For every f ∈ bpB the equation (∗∗) has a unique solution
(t , x) 7−→ Vt f (x) jointly measurable in (t , x) such that
sup0≤s≤t ||Vsf ||∞ <∞, for all t > 0.

ii) For all t ≥ 0 and x ∈ E we have 0 ≤ Vt f (x) ≤ eβt ||f ||∞.

iii) If t 7−→ Pt f (x) is right continuous on [0,∞) for all x ∈ E then
so is t 7−→ Vt f (x).

iv) The mappings f 7−→ Vt f form a nonlinear semigroup of
operators on bpB.



Space of measures

M(E): the space of all positive finite measures on (E ,B)
endowed with the weak topology.

For a function f ∈ bpB consider the mappings

lf : M(E) −→ R,

lf (µ) := 〈µ, f 〉 :=

∫
fdµ, µ ∈ M(E),

ef : M(E) −→ [0,1]
ef := exp(−lf ).

M(E):= the σ-algebra on M(E) generated by {lf | f ∈ bpB}, the
Borel σ-algebra on M(E)



The transition semigroup on the space of measures

Let (Vt )t≥0 be the nonlinear semigroup of operators on bpB.
Then there exists a unique Markovian semigroup of kernels
(Qt )t≥0 on (M(E),M(E)) such that for all f ∈ bpB and t > 0 we
have

Qt (ef ) = eVt f .



The infinitesimal generator of the forthcoming
branching process

If L is the infinitesimal generator of the semigroup (Qt )t≥0 on
M(E) and

F = ef

with f ∈ bpB, then

LF (µ) =

∫
E
µ(dx)c(x)F ′′(µ, x)+∫

E
µ(dx)[LF ′(µ, ·)(x)− b(x)F ′(µ, x)] +∫

E
µ(dx)

∫ ∞
0

N(x ,ds)[F (µ+ sδx )− F (µ)− sF ′(µ, x)]

where F ′(µ, x) and F ′′(µ, x) are the first and second variational
derivatives of F [F ′(µ, x) = limt→0

1
t (F (µ+ tδx )− F (µ))].



Linear and exponential type superharmonic functions
for the branching process

Let
β := ||b−||∞,

β′ ≥ β and
b′ := b + β′.

Then b′ ≥ 0 and let (Pb′
t )t≥0 be the transition function of the

right Markov process (which is transient if β′ > β), having
L − b′ as infinitesimal generator.

If u ∈ bpB then the following assertions are equivalent.

i) u ∈ S(L − b′)

ii) lu ∈ S(L − β′)

iii) For every α > 0 we have 1− eαu ∈ S(L − β′).



Existence of Lyapunov functions for the superprocess

Assume that the spatial motion X is a Hunt process (i.e., it is
quasi-left-continuous on [0,∞)).

Then for every λ ∈ M(E) there exists a compact Lyapunov
function F with respect to the (X ,Φ)-superprocess, such that
F (λ) <∞.



Sketch of the proof.

Since the spatial motion X has càdlàg trajectories it follows that
there exists a λ-nest of compact sets of E

=⇒

there exists a Lyapunov function v ∈ L1(E , λ) ∩ S(L − b′).

=⇒

F := lv ∈ S(L − β′) and it has compact level sets

(cf. [V. Bogachev, Springer 2007]).



Remark.

(i) The existence of the compact Lyapunov functions is the
main step for the proof of the càdlàg property of the paths of
the measure-valued (X ,Φ)-superprocess.

(ii) Zenghu Li proved (manuscript, 2009) that in order to get the
quasi left continuity of the branching process, the hypothesis "X
is a Hunt process" is necessary.



Theorem (The measure-valued branching process)

Assume that one of the following two conditions holds:
• b, c and N do not depend on x ∈ E ;
• (Pt )t≥0 is a Feller semigroup (on the locally compact space
E) and Vt (C0(E)) ⊂ C0(E) for every t ≥ 0.
Then the following assertions hold.

i) There exists a right Markov branching process (called
(X ,Φ)-superprocess) with state space M(E), having (Qt )t≥0 as
transition function.

ii) If in addition X is a Hunt process (i.e., it is quasi-left
continuous and has a.s. left limits in E) then the
(X ,Φ)-superprocess is also a Hunt process.



Negative definite functions defined on the convex cone
of bounded L-superharmonic functions

S := bS(L)

A function ϕ : S −→ R is named positive definite if for all
n ≥ 1, {v1, v2, ..., vn} ⊂ S and {a1,a2, ...,an} ⊂ R we have∑

i,j

aiajϕ(vi + vj) ≥ 0.

A function ϕ : S −→ R is termed negative definite provided
that for all n ≥ 2, {v1, v2, ..., vn} ⊂ S and {a1,a2, ...,an} ⊂ R
with

∑n
i=1 ai = 0 we have∑

i,j

aiajϕ(vi + vj) ≤ 0.



Considering S as an Abelian semigroup, a bounded
semicharacter of S is a function ρ : S −→ [−1,1] such that
ρ(0) = 1 and ρ(u + v) = ρ(u)ρ(v) for all u, v ∈ S.
The set Ŝ of all bounded semicharacters of S is an Abelian
semigroup (under the pointwise multiplication, with neutral
element the constant semicharacter 1) and it is a compact
Hausdorff topological semigroup endowed with the topology of
pointwise convergence.

(1) Let Ψ : S 7−→ R. Then Ψ is negative definite if and only if
e−tΨ is positive definite for all t > 0.

(2) Let ϕ : S 7−→ R be a bounded positive function with
ϕ(0) ≥ 0. Then there exists a unique positive Radon measure ν
on Ŝ such that

ϕ(v) =

∫
bS ρ(v)ν(dρ), for all v ∈ S.

[C. Berg, J.P.R. Christensen & P. Ressel:
Harmonic analysis on semigroups,Springer 1984]



Compact Lyapunov functions for Lévy processes on
Hilbert space

Let (H, 〈, 〉) be a real Hilbert space with corresponding norm ‖·‖
and Borel σ-algebra B(H).

Let λ : H −→ C be a continuous negative definite function such
that λ(0) = 0.

By Bochner’s Theorem there exists a finitely additive measure
νt , t > 0, on (H,B(H)) such that for its Fourier transform we
have

ν̂t (ξ) :=

∫
H

ei〈ξ,h〉νt (dh) = e−tλ(ξ), ξ ∈ H.



Let E be a Hilbert space such that H ⊂ E continuously and
densely, with inner product 〈, 〉E and norm ‖·‖.

• Identifying H with its dual H ′ we have

E ′ ⊂ H ⊂ E

continuously and densely, and

E ′〈ξ,h〉E = 〈ξ,h〉,

for all ξ ∈ E ′, h ∈ H.
For simplicity we, therefore, write for the dualization E ′〈 , 〉E
between E ′ and E also 〈 , 〉.



• We assume, that H ⊂ E is Hilbert-Schmidt. (Such a space
E always exists.)
By the Bochner-Minols Theorem each νt extends to a measure
on (E ,B(E)), which we denote again by νt , such that

ν̂t (ξ) =

∫
E

ei〈ξ,z〉νt (dz) ∀ξ ∈ E ′.

• λ restricted to E ′ is Sazonov continuous, i.e. continuous
with respect to the topology generated by all Hilbert-Schmidt
operators on E ′.
Hence by Levy’s continuity theorem on Hilbert spaces (cf. [N.N.
Vakhania, V.I. Tarieladze, and S.A. Chobanyan,87]), νt → δ0
weakly as t → 0. Here δ0 denotes Dirac measure on (E ,B(E))
concentrated at 0 ∈ E .



• By the Levy-Khintchine Theorem on Hilbert space (see e.g.
[K.R. Parthasarathy, 67]) we have for all ξ ∈ E ′

λ(ξ) = −i〈ξ,b〉+
1
2
〈ξ,Rξ〉 −

∫
E

(
ei〈ξ,z〉−1 − i〈ξ, z〉

1 + ‖z‖2

)
M(dz),

where b ∈ E , R : E ′ −→ E is linear such that its composition
with the Riesz isomorphism iR : E → E ′ is a non-negative
symmetric trace class operator, and M is a Levy measure on
(E ,B(E)), i.e. a positive measure on (E ,B(E)) such that

M({0}) = 0,
∫

E
(1 ∧ ‖z‖2)M(dz) <∞.



Defining the probability measure

pt (x ,A) := νt (A− x), t > 0, x ∈ E ,A ∈ B(E),

we obtain a semigroup of Markovian kernels (Pt )t≥0 on
(E ,B(E)).

There exists a conservative Markov process M with transition
function (Pt )t≥0 which has càdlàg paths (cf. [M. Fuhrman, M.
Röckner, Potential Analysis 00]). M is just an infinite
dimensional version of a classical Lévy process.
Each Pt maps Cb(E) into Cb(E), hence so does its associated
resolvent Uβ =

∫∞
0 e−tβPtdt , β > 0. In addition, Pt f (z)→ f (z)

as t → 0, hence βUβf (z)→ f (z) as β →∞ for all f ∈ Cb(E),
z ∈ E . Hence M is also quasi-left continuous, and thus a
standard process.



• Because H ⊂ E is Hilbert-Schmidt we can find en ∈ E ′,
n ∈ N, which form a total set in E ′ and an orthonormal basis in

H, and λn ≥ 0, n ∈ N, such that
∞∑

n=1
λn <∞ and ēn := λ

− 1
2

n en

form on orthonormal basis in E . Furthermore,

λn〈en, z〉 = 〈en, z〉E ∀n ∈ N, z ∈ E

and thus

H = {z ∈ E :
∞∑

n=1

λ−1
n 〈ēn, z〉2E <∞}.

For details see, e.g., [S. Albeverio, M. Röckner, PTRF 89].

Assumption (which is always fulfilled if λ is sufficiently regular)

(H) There exists C > 0 such that for all n ∈ N∫
〈en, z〉2νt (dz) ≤ C(1 + t2), t > 0.



Remark
If λ is sufficiently regular, one can deduce that for every ξ ∈ E ′∫

〈ξ, z〉2νt (dz) = − d2

dε2 e−tλ(εξ)
∣∣
ε=0

= t2
(
〈ξ,b〉+

∫
E
〈ξ, z〉 ‖z‖

2

1 + ‖z‖2
M(dz)

)2

+ t
(
〈ξ,Rξ〉+

∫
E
〈ξ, z〉2M(dz)

)
where we assume that ξ is such that

∫
E〈ξ, z〉

2M(dx) <∞.
Hence in this case (H) holds provided
sup{

∫
E〈ξ, z〉

2M(dz) : |ξ| ≤ 1} <∞ and M is symmetric or
finite.



Compact Lyapunov functions for Lévy processes

Let qn ∈ [1,∞) such that qn →∞ as n→∞ and

∞∑
n=1

qnλn <∞

and define q : E → R+ by

q(z) :=

( ∞∑
n=1

qn〈ēn, z〉2E

) 1
2

. (0.1)

Then q has compact level sets in E .



Define

E0 := {z ∈ E : q(z) <∞}.

Theorem

Let v0 := U1q2 and for every z ∈ E, vz := v0 ◦ T−1
z . Then vz is a

compact Lyapunov function such that

z + E0 = [vz <∞] =: Ez

and each Ez is invariant with respect to (Pt )t≥0.



Measure representation of the positive definite
functions defined on the convex cone of all bounded
L-superharmonic functions

Assume that βUβ1 = 1. Let ϕ : S −→ [0,1] be a positive
definite function having the following two order continuity
properties:

i) If v ∈ S then ϕ( 1
n v)↗ ϕ(0);

ii) If (vn)n ⊂ S is pointwise increasing to v ∈ S then
ϕ(vn)↘ ϕ(v).

Then there exists a unique finite measure P on (M(E),M(E))
such that

ϕ(v) = P(ev ), for all v ∈ S.



Corollary ([Fitzsimmons 88])

Let ϕ : bpB −→ [0,1] be positive definite such that
ϕ(fn)↗ ϕ(0) whenever (fn)n ⊂ bpB and fn ↘ 0 pointwise.

Then there exists a unique finite measure P on (M(E),M(E))
such that

ϕ(f ) = P(ef ), for all f ∈ bpB.



The Gaussian case – Brownian motion on an abstract
Wiener space

Let (E ,H, µ) be an abstract Wiener space

•
(
H, 〈 , 〉

)
is a separable real Hilbert space with

corresponding norm | · |, which is continuously and densely
embedded into a Banach space

(
E , ‖ · ‖

)
, which is hence also

separable;

• µ is a Gaussian measure on B (= the Borel σ-algebra of
E), that is, each l ∈ E ′, the dual space of E , is normally
distributed with mean zero and variance |l |2.



• We have the standard continuous and dense embeddings

E ′ ⊂ (H ′ ≡)H ⊂ E .

We then have that

E ′〈l ,h〉E = 〈l ,h〉 for all l ∈ E ′ and h ∈ H.



• The embedding H ⊂ E is automatically compact
• µ is H-quasi-invariant, that is for Th(z) := z + h, z,h ∈ E ,
we have

µ ◦ T−1
h � µ for all h ∈ H.

• The norm ‖ · ‖ is measurable in the sense of L. Gross (cf.
Dudley-Feldman-Le Cam Theorem). Hence also the centered
Gaussian measures µt , t > 0, exist on B, whose variance are
given by t |l |2, l ∈ E ′, t > 0. So,

µ1 = µ .

Clearly, µt is the image measure of µ under the map z 7−→
√

tz,
z ∈ E .



Gaussian semigroup on the Wiener space

For x ∈ E , the probability measure pt (x , · ) is defined by

pt (x ,A) := µt (A− x) , for all A ∈ B.

Let (Pt )t>0 be the associated family of Markovian kernels:

Pt f (x) :=

∫
E

f (y) pt (x ,dy) =

∫
E

f (x+y) µt (dy) , f ∈ B+, x ∈ E .

• (Pt )t≥0 (where P0 := IdE ) induces a strongly continuous
semigroup of contractions on the space Cu(E) of all bounded
uniformly continuous real-valued functions on E .



The resolvent family

U = (Uα)α>0 : the associated strongly continuous resolvent of
contractions,

Uα =
∫∞

0 e−αtPtdt , α > 0.

L : the infinitesimal generator

• U = (Uα)α>0 induces a Markovian resolvent of kernels on
(E ,B).



Aim: To construct a compact Lyapunov function,
i.e., a (L − q)-superharmonic function v such that:

the set [v ≤ α] is a compact subset of [v <∞] for all α > 0

• Let en ∈ E ′, n ∈ N, such that {en : n ∈ N} forms an
orthonormal basis of H.
For each n ∈ N define P̃n : E −→ Hn := span{e1, . . . ,en} ⊂ E ′

by

P̃nz =
n∑

k=1
E ′〈ek , z〉Eek , z ∈ E ,

and Pn := P̃n|H , so

Pnh =
n∑

k=1
E ′〈ek ,h〉Eek , h ∈ H

and Pn ↑ IdH as n→∞.



Proposition

We have
lim

n→∞
||P̃nz − z|| = 0 in µ-measure.

Let α > 1. Passing to a subsequence if necessary, which we
denote by Qn, n ∈ N, we may assume that

(2i) ||IdH −Qn||L(H,E) ≤ α−n

and

(2ii) µ({z ∈ E : ||z − Q̃nz|| > α−n}) ≤ α−n.

We used the compactness of the embedding H ⊂ E for (2i)
and Proposition for (2ii).



We define the function q : E −→ R+ by

qα(z) := (
∑
n≥0

αn||Q̃n+1z − Q̃nz||2)
1
2 , z ∈ E

where Q̃0 := 0, and let

Eα := {z ∈ E : qα(z) <∞}.



Proposition

The following assertions hold.
(i) µ(Eα) = 1.
(ii) For all h ∈ H we have qα(h) ≤

√
α
α−1 |h|. In particular,

H ⊂ Eα continuously, hence compactly.
(iii) For all z ∈ E we have ||z|| ≤

√
α
α−1qα(z). In particular,

(Eα,qα) is complete. Furthermore, (Eα,qα) is compactly
embedded into (E , || · ||).

Corollary

(cf. [R. Carmona, 80]) For each x ∈ E \ H there exists a Borel
subspace Lx of E such that , H ⊂ Lx , µ(Lx ) = 1, and x 6∈ Lx .



Compact Lyapunov function for the Brownian motion
on a Wiener space

For z ∈ E let us put
Eα,z := Eα + z.

Theorem

(i) The function qα is L-subharmonic, i.e.,

Pt (q2
α) ≥ q2

α for all t > 0.

(ii) Define v0 := U1q2
α and for every z ∈ E, vz := v0 ◦ T−1

z . Then
vz is a compact Lyapunov function such that

Eα,z = [vz <∞]

and each Eα,z is invariant with respect to (Pt )t≥0.


