Applications of Compact Superharmonic Functions: Path Regularity and Tightness of Capacities

Lucian Beznea

"Simion Stoilow" Institute of Mathematics of the Romanian Academy P.O. Box 1-764, RO-014700 Bucharest, Romania. E-mail: lucian.beznea@imar.ro

Poitiers, August 26th, 2010

The talk includes results from joint works with Nicu Boboc and Michael Röckner

E : bounded open set in \mathbb{R}^d .

 \boldsymbol{u} : bounded strictly positive potential, that is a positive superharmonic function for which every harmonic minorant is negative

Property : for every increasing sequence $(D_n)_n$ of relatively compact open subsets of *E* with $\bigcup_n D_n = E$, the sequence $(H_u^{D_n})_n$ decreases to zero, or equivalently

$$\inf_n H_u^{D_n} = 0 \quad \lambda \text{-a.e.},$$

where $H_u^{D_n}$ is the Perron-Wiener-Brelot solution of the Dirichlet problem on D_n with boundary data u.

A harmonic space possessing such a potential is called \mathfrak{P} -harmonic.

[C.Constantinescu, A. Cornea, Springer 72]

E : a Lusin topological space with Borel σ -algebra \mathcal{B}

 \mathcal{L} : the generator of a right Markov process $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$ with state space E:

 $-(\Omega, \mathcal{F})$ is a measurable space, P^x is a probability measure on (Ω, \mathcal{F}) for every $x \in E$

 $-(\mathcal{F}_t)_{t\geq 0}$: filtration on Ω

- The mapping $[0,\infty) \times \Omega \ni t \longmapsto X_t(\omega) \in E$ is $\mathcal{B}([0,\infty)) \times \mathcal{F}$ -measurable

 $-X_t$ is $\mathcal{F}_t/\mathcal{B}$ -measurable for all t

– There exists a semigroup of kernels $(P_t)_{t\geq 0}$ on (E, \mathcal{B}) , called **transition function** of *X*, such that for all $t \geq 0$, $x \in E$ and $A \in \mathcal{B}$ one has

$$\mathsf{P}^{\mathsf{x}}(\mathsf{X}_t \in \mathsf{A}) = \mathsf{P}_t(\mathsf{x},\mathsf{A})$$

[If $f \in p\mathcal{B}$ then $E^{x}(f \circ X_{t}) = P_{t}f(x)$]

– For each $\omega \in \Omega$ the mapping

$$[0,\infty)
i t \mapsto X_t(\omega) \in E$$

is right continuous

Let λ be a finite measure on *E*. The right process *X* is called λ -standard if:

- *X* has càdlàg trajectories P^{λ} -a.e., i.e., it possesses left limits in *E* P^{λ} -a.e. on $[0, \zeta)$; ζ is the life time of *X*

– X is quasi-left continuous up to ζP^{λ} -a.e., i.e., for every increasing

sequence $(T_n)_n$ of stopping times with $T_n \nearrow T$ we have

$$X_{T_n} \longrightarrow X_T P^{\lambda}$$
-a.e. on $[T < \zeta]$

The right process *X* is called **standard** if it is λ -standard for every measure λ .

$$\mathcal{U} = (U_q)_{q>0},$$

$$egin{aligned} U_q f(x) &:= E^x \int_0^\infty e^{-qt} f \circ X_t dt = \int_0^\infty e^{-qt} \mathcal{P}_t f(x) dt \ , \ x \in E, q > 0, f \in p\mathcal{B} \end{aligned}$$

 ${\mathcal L}$ is the infinitesimal generator of $(U_q)_{q>0}$, $\left[U_q=(q-{\mathcal L})^{-1}
ight]$

The following properties are equivalent for a function $v: E \longrightarrow \overline{\mathbb{R}}_+$:

- (*i*) v is $(\mathcal{L} q)$ -superharmonic
- (*ii*) There exists a sequence $(f_n)_n$ of positive, bounded, Borel measurable functions on *E* such that $U_q f_n \nearrow v$

(*iii*)
$$\alpha U_{q+\alpha} v \leq v$$
 for all $\alpha > 0$ and $\alpha U_{q+\alpha} v \nearrow v$

 $\mathcal{S}(\mathcal{L}-q)$: the set of all $(\mathcal{L}-q)$ -superharmonic functions

Reduced function

If $M \in \mathcal{B}$, q > 0, and $u \in \mathcal{S}(\mathcal{L} - q)$ then the **reduced function** of *u* on *M* (with respect to $\mathcal{L} - q$) is the function $R_d^M u$ defined by

$$R^M_q u := \inf ig\{ v \in \mathcal{S}(\mathcal{L} - q) : v \ge u ext{ on } M ig\}$$
 .

- The reduced function $R_a^M u$ is universally \mathcal{B} -measurable.
- The functional $M \mapsto c_{\lambda}(M), M \subset E$, defined by

$$c_\lambda(M):=\inf\{\int_E R^G_q$$
1 $d\lambda: G ext{ open }, \ M\subset G\}$

is a Choquet capacity on E.

• $R_q^M f(x) = E^x(f(X_{D_M}))$ [Hunt's Theorem]

An increasing sequence $(F_n)_n \subset \mathcal{B}$ is called λ -**nest** provided that

$$\inf_n R_q^{E \setminus F_n} 1 = 0 \quad \lambda - \text{a.e.}$$

• If X has càdlàg trajectories P^{λ} -a.e. then the capacity c_{λ} is tight, i.e., there exists a λ -nest of compact sets.

[T. Lyons & M. Röckner, Bull. London. Math. Soc. 1992][L.B. & N. Boboc, Bull. London. Math. Soc. 2005]

- The following assertions are equivalent for a finite measure λ on *E*.
- (*i*) The capacity c_{λ} is tight.
- (*ii*) For every increasing sequence $(D_n)_n$ of open sets with $\bigcup_n D_n = E$ we have

$$\inf_n R_q^{E \setminus D_n} 1 = 0 \quad \lambda - \text{a.e.}$$

• Assume that the space *E* is endowed with a **Ray topology** (a topology generated by a cone of bounded \mathcal{L} -superharmonic functions).

If the capacity c_{λ} is tight, then the process *X* has càdlàg trajectories P^{λ} -a.e. Moreover *X* is λ -standard (i.e., it is quasi left continuous).

A $(\mathcal{L} - q)$ -superharmonic function v is called **compact** Lyapunov function provided that it is finite λ -a.e. and the set $[v \leq \alpha]$ is relatively compact for all $\alpha > 0$.

• The following assertions are equivalent.

(a) The capacity c_{λ} is tight, i.e., there exists a λ -nest of compact sets.

(b) There exists a compact Lyapunov function.

Theorem

We endow E with a Lusin topology $\mathcal{T}(\mathcal{C})$ generated by a vector lattice \mathcal{C} of bounded, \mathcal{B} -measurable, real-valued functions on E such that $1 \in \mathcal{C}$, there exists a countable subset of \mathcal{C}_+ , separating the points of E.

Let $\mathcal{U} = (U_{\alpha})_{\alpha>0}$ be a Markovian resolvent of kernels on (E, \mathcal{B}) such that the following conditions (a) and (b) and (c) hold:

(a)
$$U_{\alpha}(\mathcal{C}) \subset \mathcal{C}$$
 for all $\alpha > 0$;

(b)
$$\lim_{\alpha \to 0} \alpha U_{\alpha} f(x) = f(x)$$
 for all $f \in C$ and $x \in E$.

(c) There exists a compact Lyapunov function (which is finite λ -a.e., where λ be a finite measure on E).

Then there exists a standard process with state space E such that its resolvent equals $\mathcal{U} \lambda$ -quasi everywhere.

A1. Construction of martingale solutions for stochastic PDE on Hilbert spaces

[L.B., N. Boboc, & M. Röckner, J. Evol. Eq. 2006]

A2. Explicit construction of compact Lyapunov functions for Lévy processes on Hilbert spaces

[L.B., A. Cornea, & M. Röckner, *RIMS Proceedings* 2008] [L.B., A. Cornea, & M. Röckner (preprint 2010)]

A3. Construction of measure valued branching processes associated to some nonlinear PDE

[L.B., J. Euro. Math. Soc. (to appear)]

[L.B. & M. Röckner, Complex Analysis and Op. Th. 2011]

Consider SPDE on a Hilbert space *H* (with inner product $\langle \;,\;\rangle$ and norm $|\cdot|)$ of type

(1)
$$dX(t) = [AX(t) + F_0(X(t))]dt + \sqrt{C}dW(t);$$

- -W(t), $t \ge 0$, is a cylindrical Brownian motion on H;
- -C is a positive definite self-adjoint linear operator on H;
- $-A: \mathcal{D}(A) \subset H \rightarrow H$ is the infinitesimal generator of a C_0 -semigroup on H.

- Furthermore,

$$F_0(x) := y_0$$
, $x \in \mathcal{D}(F)$,

where $y_0 \in F(x)$ such that $|y_0| = \min_{y \in F(x)} |y|$, and $F : \mathcal{D}(F) \subset H \to 2^H$ is an *m*-dissipative map. This means that $\mathcal{D}(F)$ is a Borel set in *H* and $\langle u - v, x - y \rangle \leq 0$ for all $x, y \in \mathcal{D}(F), u \in F(x), v \in F(y)$, and

$$\operatorname{Range}(I-F) := \bigcup_{x \in \mathcal{D}(F)} (x - F(x)) = H.$$

- Since for any $x \in D(F)$ the set F(x) is closed, non-empty and convex, F_0 is well-defined.

Remark. Such equations have been studied in [G. Da Prato, M. Röckner, PTRF 02], the main novelty being that F_0 has no continuity properties.

However, a martingale solution to (1) was only constructed under the assumption that the inverse C^{-1} of *C* exists and is bounded and that $A = A^*$ where $(A^*, \mathcal{D}(A^*))$ denotes the adjoint of $(A, \mathcal{D}(A))$. Hence, in particular, the case, where *C* is trace class, was not covered in the final result.

The underlying Kolmogorov operator

A heuristic application of Itô's formula to a solution of (1) implies that the Kolmogorov operator on test functions

$$\varphi \in \mathcal{E}_{\mathcal{A}}(\mathcal{H}) := \text{lin. span}\{\sin\langle h, x \rangle, \ \cos\langle h, x \rangle \mid h \in \mathcal{D}(\mathcal{A}^*)\}$$

has the following form:

$$\mathcal{L}_0\varphi(x) = \frac{1}{2} \cdot \mathrm{Tr}\big[CD^2\varphi(x)\big] + \langle x, A^*D\varphi(x)\rangle + \langle F_0(x), D\varphi(x)\rangle, \ x \in H,$$

where $D\varphi(x)$, $D^2\varphi(x)$ denote the first and second Fréchet derivatives of φ at $x \in H$ considered as an element in H and as an operator on H, respectively.

- By the chain rule we have $D\varphi(x) \in \mathcal{D}(A^*)$ for all $\varphi \in \mathcal{E}_A(H)$, $x \in H$.

 $-\mathcal{L}_0$ is well-defined for all φ of the form $\varphi(x) = f(\langle h_1, x \rangle, \dots, \langle h_M, x \rangle), x \in H$, with $f \in C^2(\mathbb{R}^M), M \in \mathbb{N}, h_1, \dots, h_M \in \mathcal{D}(A^*)$.

Assumptions (as in [G. Da Prato, M. Röckner, PTRF 02]):

(*H*1) (*i*) *A* is the infinitesimal generator of a strongly continuous semigroup e^{tA} , $t \ge 0$, on *H*, and there exists a constant $\omega > 0$ such that $\langle Ax, x \rangle \le -\omega |x|^2$ for all $x \in \mathcal{D}(A)$.

(*ii*) *C* is self-adjoint, nonnegative definite and such that Tr $Q < \infty$, where $Qx := \int_0^\infty e^{tA} C e^{tA^*} x dt$, $x \in H$.

(*H*2) There exists a probability measure μ on the Borel σ -algebra $\mathcal{B}(H)$ of H such that

$$(i) \int_{\mathcal{D}(F)} \left(|x|^{2p} + |F_0(x)|^p + |x|^{2p} \cdot |F_0(x)|^p \right) \, \mu(\mathrm{d}x) < \infty.$$

(*ii*) For all $\varphi \in \mathcal{E}_A(H)$ we have $\mathcal{L}_0 \varphi \in L^p(H, \mu)$ and $\int \mathcal{L}_0 \varphi d\mu = 0$ ('infinitesimal invariance'). (*iii*) $\mu(\mathcal{D}(F)) = 1$. For simplicity, we shall treat only the case p = 2. By assumption (*H*2) (*ii*) one can prove that $(\mathcal{L}_0, \mathcal{E}_A(H))$ is dissipative on $L^2(H, \mu)$, hence closable. Let $(\mathcal{L}, \mathcal{D}(\mathcal{L}))$ denote its closure.

Assumptions (*H*1) and (*H*2) imply that $(\mathcal{L}, \mathcal{D}(\mathcal{L}))$ is *m*-dissipative, hence generates a C_0 -semigroup $P_t := e^{t\mathcal{L}}$, $t \ge 0$, on $L^2(H, \mu)$ which is Markovian, i.e. positivity preserving and $P_t 1 = 1$ for all $t \ge 0$.

Clearly, μ is invariant for $(P_t)_{t\geq 0}$, i.e. $\int P_t f d\mu = \int f d\mu$ for all $t \geq 0, f \in L^2(H, \mu)$. For $f \in L^2(H, \mu)$ and $\alpha > 0$ we define

$$V_{\alpha}f:=\int_0^{\infty}e^{-\alpha t}\,\mathcal{P}_tf\,\,dt.$$

Then $(V_{\alpha})_{\alpha>0}$ is a strongly continuous Markovian contraction resolvent.

(*H*3) (*i*) There exists an orthonormal basis $\{e_j \mid j \in \mathbb{N}\}$ of *H* so that $\bigcup_{N \in \mathbb{N}} E_N$ with $E_N := \text{lin. span}\{e_j \mid 1 \le j \le N\}$ is dense in $\mathcal{D}(A^*)$ with respect to $|\cdot|_{A^*}$ and such that for the orthogonal projection P_N onto E_N in *H* we have that the function $H \ni x \mapsto \langle P_N x, A^* P_N x \rangle$ converges in $L^1(H, \mu)$ to $H \ni x \mapsto \langle x, A^* x \rangle$ (defined to be $+\infty$ if $x \in H \setminus \mathcal{D}(A^*)$).

(ii) There exist two increasing functions $\varrho_1, \varrho_2 : [1, \infty) \to (0, \infty)$ such that

$$\left|F_{0}(x)\right|^{2} \leq \varrho_{1}(|x|) + \varrho_{2}(|x|)\left|\langle x, A^{*}x\rangle\right|$$

for all $x \in H$, and the function on the right hand side is in $L^1(H, \mu)$.

Compact Lyapunov function constructed by approximation

Let $u, g : H \longrightarrow \mathbb{R}_+$, $u, g \in L^p(H, \mu)$ such that u has compact level sets.

Assume that there exist two sequences, $(u_N)_N \in \mathcal{D}(\mathcal{L})$ and $(g_N)_N \in L^p(\mathcal{H}, \mu)$,such that:

•
$$(\beta - \mathcal{L})u_N \leq g_N$$
 for all $N \in \mathbb{N}$;

• $(u_N)_N$ converges μ -a.e to u and $(g_N)_N$ converges in $L^p(H, \mu)$ to g as $N \to \infty$.

Then $v := V_{\beta}g$ is a compact Lyapunov function (because $u_N \leq V_{\beta}g_N$ for all *N* and passing to the limit we get $u \leq v$).

Take:

$$\begin{split} u(x) &:= |x|^2, x \in H, \\ u_N &:= u \circ P_N, N \in \mathbb{N}; \\ g(x) &:= 2 |x|^2 + (2 + \varrho_2(|x|)) |\langle x, A^*x \rangle| + \varrho_1(|x|), x \in H, \\ g_N &:= g \circ P_N, N \in \mathbb{N}; \end{split}$$

• Assumptions (*H*2) and (*H*3) imply that $u_N \longrightarrow u \mu$ -a.e. and $g_N \longrightarrow g$ in $L^1(H, \mu)$ as $N \rightarrow \infty$

Theorem

Assume (H1) – (H3), let $(V_{\alpha})_{\alpha>0}$ be as defined above and T be the weak topology on H. Then there exists a right process with state space H, associated with $(V_{\alpha})_{\alpha>0}$, which is a martingale solution of (1).

A2. Explicit construction of compact Lyapunov functions for Lévy processes on Hilbert spaces

-E: a real separable Banach space with topological dual E'

 $-\mathcal{L}$: the generator of a resolvent $(U_{\alpha})_{\alpha>0}$, e.g. a closed linear operator $(\mathcal{L}, \mathcal{D}(\mathcal{L}))$ on $C_u(E)$ (the space of all bounded uniformly continuous real valued functions on *E*) topological space E) such that

$$(\alpha - \mathcal{L})^{-1} = U_{\alpha}, \quad \alpha > 0$$

 $-\mathcal{L}$ is initially only known for "nice" functions $u: E \longrightarrow \mathbb{R}$; one can check that the given \mathcal{L} is defined on the set \mathcal{P} of polynomials of elements in E', i.e., function $u: E \longrightarrow \mathbb{R}$ of type

$$u(x) = p(l_1(x), l_2(x), \dots, l_m(x)), x \in E$$

with $m \in \mathbb{N}$ arbitrary and $l_1, \ldots l_m \in E'$, *p* a polynomial in *m* variables.

– Assume that \mathcal{L} is a diffusion operator, that is it satisfies the Leibniz rule and that $\mathcal{L}I = 0$ for all $I \in E'$. This is e.g. the case when L is a differential operator only involving second derivatives. More precisely, for $u \in \mathcal{P}$, $u = p(I_1, I_2, ..., I_m)$,

(1)
$$\mathcal{L}u(x) = \sum_{i,j=1}^{\infty} E' \langle l_j, A(x) l_i \rangle_E \partial_i \partial_j p(l_1, \ldots, l_m)$$

where ∂_i denotes derivative with respect to the *i*-th variable and for $x \in E$, $A(x) : E' \longrightarrow E$, linear, bounded and nonnegative, continuous in *x*. Note that the sum in (1) is finite.

- Let $(P_t)_{t\geq 0}$ be the corresponding semigroup:

$$P_t u - u = \int_0^t P_s \mathcal{L} u \, ds, \quad t \ge 0.$$

In particular for $I \in E'$, $t \ge 0$,

$$P_t l^2 - l^2 = \int_0^t P_s(Ll^2) ds = \int_0^t P_s(2_{E'}\langle l, A(x)l\rangle_E) ds \ge 0.$$

It follows that

 $P_t l^2 \ge l^2$, for all t > 0 and $l \in E'$.

– *Conclusion:* The function l^2 is \mathcal{L} -subharmonic.

- Construct a Lyapunov function in terms of $l \in E'$ and obtain, in particular, that infinite dimensional Lévy processes are quasi-left continuous: the function

$$v = U_q l^2$$

is \mathcal{L} -superharmonic and has compact level sets because

$$qv = qU_q l^2 \ge l^2.$$

A3. Nonlinear evolution equation

(*)
$$\begin{cases} \frac{d}{dt}v_t(x) = \mathcal{L}v_t(x) + \Phi(x, v_t(x)) \\ v_0 = f, \end{cases}$$

where $f \in pb\mathcal{B}$.

Aim: To give a probabilistic treatment of the equation (*).

• \mathcal{L} is the infinitesimal generator of a right Markov process with state space *E*, called **spatial motion**.

Branching mechanism

A function $\Phi: \boldsymbol{E} \times [0,\infty) \longrightarrow \mathbb{R}$ of the form

$$\Phi(x,\lambda) = -b(x)\lambda - c(x)\lambda^2 + \int_0^\infty (1 - e^{-\lambda s} - \lambda s)N(x,ds)$$

- $c \ge 0$ and b are bounded \mathcal{B} -measurable functions
- $N: p\mathcal{B}((0,\infty)) \longrightarrow p\mathcal{B}(E)$ is a kernel such that

 $N(u \wedge u^2) \in bp\mathcal{B}$

Examples of branching mechanisms

$$egin{aligned} \Phi(\lambda) &= -\lambda^lpha & ext{if} & 1 < lpha \leq 2 \ \Phi(\lambda) &= \lambda^lpha & ext{if} & 0 < lpha < 1 \end{aligned}$$

References

• N. Ikeda, M. Nagasawa, S. Watanabe: Branching Markov processes, I,II, *J. Math. Kyoto Univ.* **8** (1968), 365-410, 233-278

• P.J. Fitzsimmons: Construction and regularity of measure-valued Markov branching processes, *Israel J. Math.* **64**, 337-361, 1988

• E.B. Dynkin: *Diffusions, superdiffusions and partial differential equations*, Colloq. publications (Amer. Math. Soc.), **50**, 2002

• N. El Karoui and S. Roelly: Propriétés de martingales, explosion et représentation de Lévy-Khinchine d'une classe de processus de branchement à valeurs mesures, *Stoch. Proc. and their Appl.* **38**, 239-266, 1991

• G. Leduc:The complete characterization of a general class of superprocesses. *Probab. Theory Relat. Fields* **116**, 317-358, 2000

Construction of the nonlinear semigroup ([Fitzsimmons 88])

The equation

(*)
$$\begin{cases} \frac{d}{dt}v_t(x) = \mathcal{L}v_t(x) + \Phi(x, v_t(x)) \\ v_0 = f, \end{cases}$$

is formally equivalent with

$$(**) \quad v_t(x) = P_t f(x) + \int_0^t P_s(x, \Phi(\cdot, v_{t-s})) ds,$$

> 0, *x* ∈ *E*

The following assertions hold.

i) For every $f \in bp\mathcal{B}$ the equation (**) has a unique solution $(t, x) \mapsto V_t f(x)$ jointly measurable in (t, x) such that $\sup_{0 \le s \le t} ||V_s f||_{\infty} < \infty$, for all t > 0.

ii) For all $t \ge 0$ and $x \in E$ we have $0 \le V_t f(x) \le e^{\beta t} ||f||_{\infty}$.

iii) If $t \mapsto P_t f(x)$ is right continuous on $[0, \infty)$ for all $x \in E$ then so is $t \mapsto V_t f(x)$.

iv) The mappings $f \mapsto V_t f$ form a nonlinear semigroup of operators on $bp\mathcal{B}$.

M(E): the space of all positive finite measures on (E, B) endowed with the weak topology.

For a function $f \in bp\mathcal{B}$ consider the mappings

$$egin{aligned} & I_f: \mathcal{M}(\mathcal{E}) \longrightarrow \mathbb{R}, \ & I_f(\mu) := \langle \mu, f
angle := \int f d\mu, \ \mu \in \mathcal{M}(\mathcal{E}), \ & e_f: \mathcal{M}(\mathcal{E}) \longrightarrow [0,1] \ & e_f := exp(-I_f). \end{aligned}$$

 $\mathcal{M}(E)$:= the σ -algebra on M(E) generated by $\{I_f | f \in bp\mathcal{B}\}$, the Borel σ -algebra on M(E)

Let $(V_t)_{t\geq 0}$ be the nonlinear semigroup of operators on bp \mathcal{B} . Then there exists a unique Markovian semigroup of kernels $(Q_t)_{t\geq 0}$ on $(M(E), \mathcal{M}(E))$ such that for all $f \in bp\mathcal{B}$ and t > 0 we have

$$Q_t(e_f) = e_{V_t f}.$$

The infinitesimal generator of the forthcoming branching process

If $\overline{\mathcal{L}}$ is the infinitesimal generator of the semigroup $(Q_t)_{t\geq 0}$ on M(E) and

$$F = e_f$$

with $f \in bp\mathcal{B}$, then

$$\begin{aligned} \overline{\mathcal{L}}F(\mu) &= \int_{E} \mu(dx)c(x)F''(\mu, x) + \\ \int_{E} \mu(dx)[\mathcal{L}F'(\mu, \cdot)(x) - b(x)F'(\mu, x)] + \\ &\int_{E} \mu(dx)\int_{0}^{\infty} N(x, ds)[F(\mu + s\delta_{x}) - F(\mu) - sF'(\mu, x)] \end{aligned}$$

where $F'(\mu, x)$ and $F''(\mu, x)$ are the first and second variational derivatives of $F[F'(\mu, x) = \lim_{t\to 0} \frac{1}{t}(F(\mu + t\delta_x) - F(\mu))]$.

Linear and exponential type superharmonic functions for the branching process

Let

$$\beta := ||\boldsymbol{b}^-||_{\infty},$$

 $\beta' \geq \beta$ and

$$b' := b + \beta'.$$

Then $b' \ge 0$ and let $(P_t^{b'})_{t\ge 0}$ be the transition function of the right Markov process (which is transient if $\beta' > \beta$), having $\mathcal{L} - b'$ as infinitesimal generator.

If $u \in bp\mathcal{B}$ then the following assertions are equivalent.

$$\begin{array}{l} \textit{i) } u \in \mathcal{S}(\mathcal{L} - b') \\ \textit{ii) } l_u \in \mathcal{S}(\overline{\mathcal{L}} - \beta') \\ \textit{iii) } \text{For every } \alpha > \texttt{0} \text{ we have } \texttt{1} - \textbf{e}_{\alpha u} \in \mathcal{S}(\overline{\mathcal{L}} - \beta'). \end{array}$$

Assume that the spatial motion X is a Hunt process (i.e., it is quasi-left-continuous on $[0, \infty)$).

Then for every $\lambda \in M(E)$ there exists a compact Lyapunov function *F* with respect to the (X, Φ) -superprocess, such that $F(\lambda) < \infty$.

 \Longrightarrow

 \Longrightarrow

Since the spatial motion *X* has càdlàg trajectories it follows that there exists a λ -nest of compact sets of *E*

there exists a Lyapunov function $v \in L^1(E, \lambda) \cap S(\mathcal{L} - b')$.

 $F := I_v \in S(\overline{\mathcal{L}} - \beta')$ and it has compact level sets (cf. [V. Bogachev, Springer 2007]).

(*i*) The existence of the compact Lyapunov functions is the main step for the proof of the càdlàg property of the paths of the measure-valued (X, Φ) -superprocess.

(*ii*) Zenghu Li proved (manuscript, 2009) that in order to get the quasi left continuity of the branching process, the hypothesis "X is a Hunt process" is necessary.

Assume that one of the following two conditions holds:

- b, c and N do not depend on $x \in E$;
- $(P_t)_{t\geq 0}$ is a Feller semigroup (on the locally compact space E) and $V_t(C_0(E)) \subset C_0(E)$ for every $t \geq 0$. Then the following assertions hold.

i) There exists a right Markov branching process (called (X, Φ) -superprocess) with state space M(E), having $(Q_t)_{t\geq 0}$ as transition function.

ii) If in addition X is a Hunt process (i.e., it is quasi-left continuous and has a.s. left limits in E) then the (X, Φ) -superprocess is also a Hunt process.

Negative definite functions defined on the convex cone of bounded \mathcal{L} -superharmonic functions

$$\mathcal{S} := b\mathcal{S}(\mathcal{L})$$

A function $\varphi : S \longrightarrow \mathbb{R}$ is named **positive definite** if for all $n \ge 1, \{v_1, v_2, ..., v_n\} \subset S$ and $\{a_1, a_2, ..., a_n\} \subset \mathbb{R}$ we have

$$\sum_{i,j}a_ia_j\varphi(v_i+v_j)\geq 0.$$

A function $\varphi : S \longrightarrow \mathbb{R}$ is termed **negative definite** provided that for all $n \ge 2$, $\{v_1, v_2, ..., v_n\} \subset S$ and $\{a_1, a_2, ..., a_n\} \subset \mathbb{R}$ with $\sum_{i=1}^n a_i = 0$ we have

$$\sum_{i,j}a_ia_j\varphi(v_i+v_j)\leq 0.$$

Considering S as an Abelian semigroup, a bounded **semicharacter** of S is a function $\rho : S \longrightarrow [-1, 1]$ such that $\rho(0) = 1$ and $\rho(u + v) = \rho(u)\rho(v)$ for all $u, v \in S$. The set \hat{S} of all bounded semicharacters of S is an Abelian semigroup (under the pointwise multiplication, with neutral element the constant semicharacter 1) and it is a compact Hausdorff topological semigroup endowed with the topology of pointwise convergence.

(1) Let $\Psi : S \mapsto \mathbb{R}$. Then Ψ is negative definite if and only if $e^{-t\Psi}$ is positive definite for all t > 0.

(2) Let $\varphi : S \mapsto \mathbb{R}$ be a bounded positive function with $\varphi(0) \ge 0$. Then there exists a unique positive Radon measure ν on \widehat{S} such that

$$arphi(\mathbf{v}) = \int_{\widehat{\mathcal{S}}}
ho(\mathbf{v})
u(\mathbf{d}
ho), \quad ext{ for all } \mathbf{v} \in \mathcal{S}.$$

[C. Berg, J.P.R. Christensen & P. Ressel: Harmonic analysis on semigroups, Springer 1984] Let (H, \langle, \rangle) be a real Hilbert space with corresponding norm $\|\cdot\|$ and Borel σ -algebra $\mathcal{B}(H)$.

Let $\lambda : H \longrightarrow \mathbb{C}$ be a continuous negative definite function such that $\lambda(0) = 0$.

By Bochner's Theorem there exists a finitely additive measure ν_t , t > 0, on $(H, \mathcal{B}(H))$ such that for its Fourier transform we have

$$\widehat{\nu}_t(\xi) := \int_H e^{i\langle \xi,h \rangle} \nu_t(dh) = e^{-t\lambda(\xi)}, \quad \xi \in H.$$

Let *E* be a Hilbert space such that $H \subset E$ continuously and densely, with inner product \langle, \rangle_E and norm $\|\cdot\|$.

• Identifying *H* with its dual *H'* we have

$$E' \subset H \subset E$$

continuously and densely, and

$$_{E'}\langle \xi,h\rangle_E=\langle \xi,h
angle,$$

for all $\xi \in E'$, $h \in H$. For simplicity we, therefore, write for the dualization $_{E'}\langle , \rangle_E$ between E' and E also \langle , \rangle . • We assume, that $H \subset E$ is Hilbert-Schmidt. (Such a space *E* always exists.)

By the Bochner-Minols Theorem each ν_t extends to a measure on $(E, \mathcal{B}(E))$, which we denote again by ν_t , such that

$$\widehat{
u}_t(\xi) = \int_{E} e^{i\langle \xi, z \rangle}
u_t(dz) \quad \forall \xi \in E'.$$

• λ restricted to E' is Sazonov continuous, i.e. continuous with respect to the topology generated by all Hilbert-Schmidt operators on E'.

Hence by Levy's continuity theorem on Hilbert spaces (cf. [N.N. Vakhania, V.I. Tarieladze, and S.A. Chobanyan,87]), $\nu_t \rightarrow \delta_0$ weakly as $t \rightarrow 0$. Here δ_0 denotes Dirac measure on $(E, \mathcal{B}(E))$ concentrated at $0 \in E$.

By the Levy-Khintchine Theorem on Hilbert space (see e.g. [K.R. Parthasarathy, 67]) we have for all *ξ* ∈ *E*[']

$$\lambda(\xi) = -i\langle \xi, b \rangle + \frac{1}{2}\langle \xi, R\xi \rangle - \int_E \left(e^{i\langle \xi, z \rangle - 1} - \frac{i\langle \xi, z \rangle}{1 + \|z\|^2} \right) M(dz),$$

where $b \in E$, $R : E' \longrightarrow E$ is linear such that its composition with the Riesz isomorphism $i_R : E \rightarrow E'$ is a non-negative symmetric trace class operator, and *M* is a Levy measure on $(E, \mathcal{B}(E))$, i.e. a positive measure on $(E, \mathcal{B}(E))$ such that

$$M(\lbrace 0
brace) = 0, \quad \int_E (1 \wedge \|z\|^2) M(dz) < \infty.$$

Defining the probability measure

$$p_t(x, A) := \nu_t(A - x), t > 0, x \in E, A \in \mathcal{B}(E),$$

we obtain a semigroup of Markovian kernels $(P_t)_{t\geq 0}$ on $(E, \mathcal{B}(E))$.

There exists a conservative Markov process \mathbb{M} with transition function $(P_t)_{t\geq 0}$ which has càdlàg paths (cf. [M. Fuhrman, M. Röckner, *Potential Analysis* 00]). \mathbb{M} is just an infinite dimensional version of a classical Lévy process.

Each P_t maps $C_b(E)$ into $C_b(E)$, hence so does its associated resolvent $U_{\beta} = \int_0^{\infty} e^{-t\beta} P_t dt$, $\beta > 0$. In addition, $P_t f(z) \to f(z)$ as $t \to 0$, hence $\beta U_{\beta} f(z) \to f(z)$ as $\beta \to \infty$ for all $f \in C_b(E)$, $z \in E$. Hence \mathbb{M} is also quasi-left continuous, and thus a standard process. • Because $H \subset E$ is Hilbert-Schmidt we can find $e_n \in E'$, $n \in \mathbb{N}$, which form a total set in E' and an orthonormal basis in H, and $\lambda_n \ge 0$, $n \in \mathbb{N}$, such that $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $\bar{e}_n := \lambda_n^{-\frac{1}{2}} e_n$ form on orthonormal basis in E. Furthermore,

$$\lambda_n \langle \boldsymbol{e}_n, \boldsymbol{z} \rangle = \langle \boldsymbol{e}_n, \boldsymbol{z} \rangle_{\boldsymbol{E}} \quad \forall n \in \mathbb{N}, \, \boldsymbol{z} \in \boldsymbol{E}$$

and thus

$$H = \{z \in E : \sum_{n=1}^{\infty} \lambda_n^{-1} \langle \bar{e}_n, z \rangle_E^2 < \infty\}.$$

For details see, e.g., [S. Albeverio, M. Röckner, PTRF 89].

Assumption (which is always fulfilled if λ is sufficiently regular)

(H) There exists C > 0 such that for all $n \in \mathbb{N}$

$$\int \langle \boldsymbol{e}_n, \boldsymbol{z} \rangle^2 \nu_t(d\boldsymbol{z}) \leq C(1+t^2), \quad t > 0.$$

Remark

If λ is sufficiently regular, one can deduce that for every $\xi \in E'$

$$\begin{split} \int \langle \xi, z \rangle^2 \nu_t(dz) &= -\frac{d^2}{d\varepsilon^2} e^{-t\lambda(\varepsilon\xi)} \big|_{\varepsilon=0} \\ &= t^2 \left(\langle \xi, b \rangle + \int_E \langle \xi, z \rangle \frac{\|z\|^2}{1 + \|z\|^2} M(dz) \right)^2 \\ &+ t \left(\langle \xi, R\xi \rangle + \int_E \langle \xi, z \rangle^2 M(dz) \right) \end{split}$$

where we assume that ξ is such that $\int_E \langle \xi, z \rangle^2 M(dx) < \infty$. Hence in this case (H) holds provided $\sup\{\int_E \langle \xi, z \rangle^2 M(dz) : |\xi| \le 1\} < \infty$ and M is symmetric or finite.

Compact Lyapunov functions for Lévy processes

Let $q_n \in [1,\infty)$ such that $q_n \to \infty$ as $n \to \infty$ and

$$\sum_{n=1}^{\infty} q_n \lambda_n < \infty$$

and define $q: E \to \overline{\mathbb{R}}_+$ by

$$q(z) := \left(\sum_{n=1}^{\infty} q_n \langle \bar{\boldsymbol{e}}_n, z \rangle_E^2\right)^{\frac{1}{2}}.$$
 (0.1)

Then q has compact level sets in E.

Define

$$E_0:=\{z\in E: q(z)<\infty\}.$$

Theorem

Let $v_0 := U_1 q^2$ and for every $z \in E$, $v_z := v_0 \circ T_z^{-1}$. Then v_z is a compact Lyapunov function such that

$$z + E_0 = [v_z < \infty] =: E_z$$

and each E_z is invariant with respect to $(P_t)_{t>0}$.

Measure representation of the positive definite functions defined on the convex cone of all bounded \mathcal{L} -superharmonic functions

Assume that $\beta U_{\beta} 1 = 1$. Let $\varphi : S \longrightarrow [0, 1]$ be a positive definite function having the following two order continuity properties:

i) If
$$v \in S$$
 then $\varphi(\frac{1}{n}v) \nearrow \varphi(0)$;

ii) If $(v_n)_n \subset S$ is pointwise increasing to $v \in S$ then $\varphi(v_n) \searrow \varphi(v)$.

Then there exists a unique finite measure \overline{P} on $(M(E), \mathcal{M}(E))$ such that

$$\varphi(\mathbf{v}) = \overline{\mathbf{P}}(\mathbf{e}_{\mathbf{v}}), \text{ for all } \mathbf{v} \in \mathcal{S}.$$

Let $\varphi : bp\mathcal{B} \longrightarrow [0, 1]$ be positive definite such that $\varphi(f_n) \nearrow \varphi(0)$ whenever $(f_n)_n \subset bp\mathcal{B}$ and $f_n \searrow 0$ pointwise.

Then there exists a unique finite measure \overline{P} on $(M(E), \mathcal{M}(E))$ such that

$$\varphi(f) = \overline{P}(e_f), \text{ for all } f \in bp\mathcal{B}.$$

Let (E, H, μ) be an *abstract Wiener space*

- (H, \langle , \rangle) is a separable real Hilbert space with corresponding norm $|\cdot|$, which is continuously and densely embedded into a Banach space $(E, ||\cdot||)$, which is hence also separable;
- μ is a Gaussian measure on \mathcal{B} (= the Borel σ -algebra of E), that is, each $l \in E'$, the dual space of E, is normally distributed with mean zero and variance $|l|^2$.

• We have the standard continuous and dense embeddings

$${\sf E}'\subset ({\sf H}'\equiv){\sf H}\subset {\sf E}$$
 .

We then have that

$$_{E'}\langle I,h\rangle_E=\langle I,h
angle$$
 for all $I\in E'$ and $h\in H$.

- The embedding $H \subset E$ is automatically compact
- μ is *H*-quasi-invariant, that is for $T_h(z) := z + h$, $z, h \in E$, we have

$$\mu \circ T_h^{-1} \ll \mu$$
 for all $h \in H$.

• The norm $\|\cdot\|$ is *measurable* in the sense of L. Gross (cf. Dudley-Feldman-Le Cam Theorem). Hence also the centered Gaussian measures μ_t , t > 0, exist on \mathcal{B} , whose variance are given by $t|I|^2$, $I \in E'$, t > 0. So,

$$\mu_1 = \mu$$
.

Clearly, μ_t is the image measure of μ under the map $z \mapsto \sqrt{tz}$, $z \in E$.

For $x \in E$, the probability measure $p_t(x, \cdot)$ is defined by

$$p_t(x, A) := \mu_t(A - x)$$
, for all $A \in \mathcal{B}$.

Let $(P_t)_{t>0}$ be the associated family of Markovian kernels:

$$P_t f(x) := \int_E f(y) p_t(x, \mathrm{d} y) = \int_E f(x+y) \mu_t(\mathrm{d} y) , \quad f \in \mathcal{B}_+, \ x \in E.$$

• $(P_t)_{t\geq 0}$ (where $P_0 := Id_E$) induces a strongly continuous semigroup of contractions on the space $C_u(E)$ of all bounded uniformly continuous real-valued functions on *E*.

 $\mathcal{U} = (U_{\alpha})_{\alpha>0}$: the associated strongly continuous resolvent of contractions,

$$U_{\alpha} = \int_{0}^{\infty} e^{-\alpha t} P_{t} dt, \alpha > 0.$$

 $\ensuremath{\mathcal{L}}$: the infinitesimal generator

• $\mathcal{U} = (U_{\alpha})_{\alpha>0}$ induces a Markovian resolvent of kernels on $(\mathcal{E}, \mathcal{B})$.

Aim: To construct a compact Lyapunov function, i.e., a $(\mathcal{L} - q)$ -superharmonic function v such that: the set $\overline{[v \le \alpha]}$ is a compact subset of $[v < \infty]$ for all $\alpha > 0$

• Let $e_n \in E'$, $n \in \mathbb{N}$, such that $\{e_n : n \in \mathbb{N}\}$ forms an orthonormal basis of H. For each $n \in \mathbb{N}$ define $\widetilde{P}_n : E \longrightarrow H_n := span\{e_1, \ldots, e_n\} \subset E'$ by

$$\widetilde{P}_n z = \sum_{k=1}^n {}_{E'} \langle e_k, z \rangle_E e_k, z \in E,$$

and $P_n := \widetilde{P}_n|_H$, so

$${\sf P}_n h = \sum_{k=1}^n {}_{E'} \langle {m e}_k, h
angle_E {m e}_k, \, h \in H$$

and $P_n \uparrow Id_H$ as $n \to \infty$.

Proposition

We have

$$\lim_{n\to\infty} ||\widetilde{P}_n z - z|| = 0 \text{ in } \mu\text{-measure.}$$

Let $\alpha > 1$. Passing to a subsequence if necessary, which we denote by Q_n , $n \in \mathbb{N}$, we may assume that

$$(2i) \quad ||Id_H - Q_n||_{\mathcal{L}(H,E)} \le \alpha^{-n}$$

and

(2*ii*)
$$\mu(\{z \in E : ||z - \widetilde{Q}_n z|| > \alpha^{-n}\}) \le \alpha^{-n}.$$

We used the compactness of the embedding $H \subset E$ for (2*i*) and Proposition for (2*ii*).

We define the function $q: E \longrightarrow \overline{\mathbb{R}}_+$ by

$$q_{lpha}(z) := (\sum_{n \geq 0} lpha^n ||\widetilde{Q}_{n+1}z - \widetilde{Q}_n z||^2)^{rac{1}{2}}, \quad z \in E$$

where $\widetilde{Q}_0 := 0$, and let

$$E_{\alpha}:=\{z\in E: q_{\alpha}(z)<\infty\}.$$

Proposition

The following assertions hold. (i) $\mu(E_{\alpha}) = 1$. (ii) For all $h \in H$ we have $q_{\alpha}(h) \leq \sqrt{\frac{\alpha}{\alpha-1}} |h|$. In particular, $H \subset E_{\alpha}$ continuously, hence compactly. (iii) For all $z \in E$ we have $||z|| \leq \sqrt{\frac{\alpha}{\alpha-1}} q_{\alpha}(z)$. In particular, (E_{α}, q_{α}) is complete. Furthermore, (E_{α}, q_{α}) is compactly embedded into ($E, || \cdot ||$).

Corollary

(cf. [R. Carmona, 80]) For each $x \in E \setminus H$ there exists a Borel subspace L_x of E such that , $H \subset L_x$, $\mu(L_x) = 1$, and $x \notin L_x$.

Compact Lyapunov function for the Brownian motion on a Wiener space

For $z \in E$ let us put

$$E_{\alpha,z} := E_{\alpha} + z.$$

Theorem

(*i*) The function q_{α} is \mathcal{L} -subharmonic, i.e.,

 $P_t(q_\alpha^2) \ge q_\alpha^2$ for all t > 0.

(ii) Define $v_0 := U_1 q_{\alpha}^2$ and for every $z \in E$, $v_z := v_0 \circ T_z^{-1}$. Then v_z is a compact Lyapunov function such that

$$E_{\alpha,z} = [v_z < \infty]$$

and each $E_{\alpha,z}$ is invariant with respect to $(P_t)_{t\geq 0}$.